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Single-stranded DNA is more subject to mutation than double stranded. During transcription, DNA is transiently single
stranded and therefore subject to higher mutagenesis. However, if local intra-strand secondary structures are formed,
some bases will be paired and therefore less sensitive to mutation than unpaired bases. Using complete genome
sequences of Escherichia coli, we show that local intra-strand secondary structures can, as a consequence, be used to
define an index of transcription-driven mutability. At gene level, we show that natural selection has favoured a
reduced transcription-driven mutagenesis via the higher than expected frequency of occurrence of intra-strand
secondary structures. Such selection is stronger in highly expressed genes and suggests a sequence-dependent way to
control mutation rates and a novel form of selection affecting the evolution of synonymous mutations.
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Introduction

DNA mutation results from a combination of chemical
alterations of nucleotides and base mis-incorporation (sto-
chastic or damage-driven) by DNA polymerases [1]. The
spontaneous rate of mutation is not homogenous along the
whole chromosome. Base composition and sequence-specific
biases in mutation rates exist, e.g., tracts of guanine facilitate
polymerase slippage [1], and mutations from GC to AT base
pairs tend to be prevalent [2]. Temporal variations in
mutation rate also exist: while being transcribed, DNA is
transiently single stranded and its bases are therefore much
more sensitive to chemical alterations [3,4]. Recently,
temporal and sequence-specific variation in the mutation
rate has been shown in some bacterial genes [5] and in the
human cancer-linked gene P53 [6]. The mechanism proposed
to explain these observations is the following: during tran-
scription, while DNA is single stranded, local intra-strand
secondary structures are transiently created, depending upon
the nucleotide sequence; bases paired in such structures are
more protected from alterations than unpaired bases. Hence,
both transcription-level and local sequence composition
modulate the spontaneous rate of transcription-driven muta-
genesis (TDM). Based on the stability of local DNA secondary
structure, it is possible to assign each nucleotide a mutability
index that has some predictive power on its spontaneous
mutation rate [4]. Using experimental data from Escherichia
coli, Wright et al. showed in pioneering work that such an
index can be calculated by folding 30-bp subsequences [5].

As a large fraction of mutations tend to be deleterious [7,8],
a plethora of DNA repair mechanisms have been selected for,
and the parallel action of these mechanisms can result in per
base mutation rates as low as 10�9 per generation [1,9]. Most
of these mechanisms act through enzymes that correct
damaged or erroneously incorporated bases over the whole
chromosome. However, as TDM varies with gene tran-
scription level and local sequence composition, it offers a
means by which mutation rates can be modulated locally
through a preventive mechanism, as opposed to enzymatic
mechanisms that act globally and rely on the identification of

errors after they have already occurred. Gene expression level
has already been shown to impact genome evolution as it
modulates synonymous mutation [10–12] and amino acid
substitution rates [13,14]; in the present paper we investigate
the influence of TDM on genome evolution and show that the
control of TDM through DNA secondary structures is under
selection in the E. coli bacterial genome.

Results/Discussion

A Transcription-Driven Mutability Index Based on Relative

Time Spent Unpaired
We defined a transcription-driven mutability index (TDMI)

that, averaged over an entire gene, would reflect the overall
mutability of that gene. We suspected that there would be a
correlation between TDM and the time spent by bases in an
unpaired state, and thus defined the TDMI as the relative
amount of time spent by a base in an unpaired state. We
proceeded as follows: (i) all 30-bp subsequences including a
given base, x, were folded using the program hybrid-ss-min in
the software OligoArrayAux 1.9 [15,16]; (ii) for each sub-
sequence, both the free energy (DG) of its most stable
structure and the paired/unpaired state of base x in this fold
were recorded; and (iii) the TDMI of base x was calculated as
the ratio of the sum of exp(�DG/RT) over all most-stable folds
in which x was unpaired and the sum of exp(�DG/RT) over all
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most-stable folds that include base x (in which T is the
temperature in degrees Kelvin and R is the perfect gas
constant). TDMI is thus constrained to lie between zero and
one, with one corresponding to a higher chance of being
affected by TDM.

Variable Bases in Genome Alignment Present a Higher
TDMI

We compared the TDMI of bases that varied among three
fully sequenced E. coli genomes to those that remained
constant. To avoid strong selection effects that might obscure
the signal, we restricted our analysis to 4-fold degenerate sites
(L4 sites); as mutations at these sites do not affect the protein
sequence, they are least affected by selection. We used
pairwise nucleotide alignments of orthologous genes in three
genomes of E. coli: MG1655 [17], CFT073 [18], and O157:H7
[19]. As shown in Figure 1A, each pairwise comparison
revealed that variable sites had a higher TDMI than constant
ones (n ¼ 550,575, two-tailed t-test, p , 2.2 3 10�16,
randomisation test, p , 2.2 3 10�16), as expected by our
model of mutagenesis. Our model also suggests that the
relative importance of TDM should be an increasing function
of expression level, which can be approximated by major
codon usage (MCU), a measure of codon bias [20] that reflects
the intensity of natural selection acting on synonymous
codons to enhance translation fidelity and efficiency. Indeed,
since 1981, it has been highlighted that gene expression level
influences the choice of synonymous codons, with codons
having more tRNA being preferentially used in highly
expressed genes [10–12]. Using logistic regressions on the
previous dataset, we estimated that the probability of each L4
site changing between CFT073 and MG1655 was increased by
20.7% when TDMI increased from zero to one (Figure 1B).
We performed the same analysis on a subset of genes
characterised by their MCU. For genes with MCU ranging
from 0.4 to 0.6 (low level of expression), 0.6 to 0.7 (high level
of expression), and higher than 0.7 (very high level of

expression), the relative impact of TDMI was, respectively,
17.5% (95% confidence interval [CI]: 0.156–0.190), 29.6%
(95% CI: 0.254–0.332), and 14.4% (95% CI: 0.080–0.210).
Hence, expression level increased the impact of TDM as
expected, but in very highly expressed genes the intensity of
selection acting on synonymous codons through codon bias
became substantial and obscured the signal of mutagenesis so
that the observed variability between strains at L4 sites was a
mixture of mutation and selection. These observations
validated our model of mutagenesis and the use of TDMI as
an indicator of mutability; more importantly, they suggested
that the modulation of TDM through selection might be
strong enough to leave a distinctive footprint in the genome.

Gene Average TDMI Is Influenced by GC Content
To detect if selection had influenced the values of TDMI

observed in bacterial genomes, we compared the observed

Figure 1. Relationship between TDMIs of L4 Sites and Their Variation

during E. coli MG1655 and E. coli CFT073 Divergence

(A) This graph represents average TDMI at constant and variable L4 sites
in gene by gene alignment of the completely sequenced strains E. coli
CFT073 and E. coli MG1655. In both genomic contexts, averages of TDMI
of constant sites are exactly the same: 0.630. For the variable sites,
averages of TDMI are 0.668 for MG1655 and 0.665 for CFT073. The error
bars are 95% CIs on the mean estimated by bootstrap.
(B) This graph represents the fraction of variable L4 sites as a function of
TDMI (histogram) and logistic regression (p , 2 3 10�16, n ¼ 550,575)
(line).
doi:10.1371/journal.pgen.0020176.g001
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Synopsis

Genome sequence evolution results from the interplay between
mutagenesis and natural selection. Mutations occur as the result of
biochemical or physical alteration of DNA and/or from the errors
made by polymerases while replicating DNA. As many mutations
tend to be detrimental to the organism’s fitness, natural selection
favours a decrease in mutation rate. Hence, many mechanisms have
evolved to control mutation rate. The mechanisms described to date
have relied on (i) the existence of enzymes repairing the damaged
DNA or correcting mismatched bases, which are mechanisms having
an effect on whole genome mutation rate, and (ii) the avoidance in
the sequence of repetition that could be misread by the
polymerases, which is a sequence-dependent local control of
mutation rate. In the present paper, the authors suggest that
another sequence-dependent control of mutation exists and shapes
the overall evolution of the genome. Using a comparative analysis of
Escherichia coli genomes, they show that local secondary structures
that are formed during the transcription of genes into RNA can
modulate the base-to-base mutation rate. Moreover, the authors
show that natural selection seems to have favoured the occurrence
of such structures to minimise mutability, especially in the most
expressed genes. This paper proposes a new way in which gene
sequences can be constrained by natural selection.



TDMI values with the values obtained using various random-
isation processes on the genome. These randomisations
aimed at producing the TDMI patterns expected by chance.
We first studied the distribution of gene TDMI, i.e., average
TDMI values of all the bases of the gene, of the E. coli MG1655
strain. We compared this distribution to the one obtained in
randomised genomes, i.e., genomes having the same number
of genes and in which gene length and GC percent content
(GC%) are identical to those of the observed genome, but in
which each gene has its nucleotide sequence shuffled. As
presented in Figure 2, the observed distribution was
significantly skewed towards lower gene TDMI (two-tailed t-
test, p , 2.2 3 10�16), a pattern reflecting selection to
minimise mutability at the genome scale.

To better understand the determinants of such selection,
we then contrasted gene TDMI with various gene features.
Gene TDMI correlated negatively with GC%, gene expres-
sion, and MCU. Whereas TDMI correlated poorly with GC%
(r ¼ �0.23) when evaluated on random genomes, the
correlation with GC% was very strong on the observed
genome (r ¼ �0.7), suggesting that high GC% genes had
evolved the lowest mutability. The negative correlation with
MCU (p¼ 4.463 10�11 in multiple regression including GC%,
adjusted r-squared: 0.4919) reflected that the highly expressed
genes tended to have lower TDMI. However, the impact of
MCU on the quality of the multiple regression was marginal
compared to the impact of GC% (adjusted r-squared: 0.4887
and 0.4919 for GC% and GC%þMCU, respectively). Several
factors could explain why GC-rich genes tend to evolve lower
TDMI. As GC bases are more sensitive to TDM [2,5], selection
to minimise TDM could be stronger in GC-rich genes.

Alternatively, as GC pairing is stronger than that of AT, it
is possible that selection acting to minimise TDMI can be
achieved more easily in GC-rich genes that allow more stable
secondary structures to be made.

High Gene Expression Selects for an Effective Decrease in
Intrinsic TDMI
One of the limits of the previous approach is that it does not

consider the constraints imposed by gene function on amino
acid sequence and subsequently on DNA sequence. A specific
function could require a protein whose amino acids have AT-
rich codons. Constraints imposed by gene function could limit
the minimum value gene TDMI could reach. This could erase
the footprint of selection acting to minimise TDMI, as some
constrained genes in which TDMI has been minimised could
have higher TDMI than less constrained genes. In order to
investigate these effects, we undertook an alternative ap-
proach in which we compared the observed TDMI to that
expected when genes were randomised by having their
synonymous codons shuffled. All randomised genes thus code
for the same proteins and share the same GC% and same
codon bias as the observed genes. A gene was considered
intrinsically robust to mutation if its TDMI was lower than the
TDMI of 95% of this randomised set of genes. All 4,307 genes
were randomised 1,000 times, an operation that required
folding several billion subsequences. Over 20% of genes were
identified as robust (5% expected by chance alone), revealing
that selection was acting on many genes to reduce the TDMI.
Using logistic multiple regressions, we identified MCU (Figure
3) as the only predictive factor of robust genes (logistic
regression between MCU, GC%, and fraction of significant
gene: p(MCU) , 23 10�16, p(GC%)¼ 0.131). The genes having

Figure 2. Distributions of Gene Average TDMI for E. coli MG1655 Genome and for Five Virtual Genomes

The open bars show the distribution for the MG1655 genome; the line shows the distribution for five virtual genomes composed of shuffled genes with
identical length and GC% as the observed genes. The E. coli genome has a lower gene TDMI than expected from nucleotide composition (Student’s
two-tailed t-test p , 2.2 3 10�16).
doi:10.1371/journal.pgen.0020176.g002
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the highest MCU had a 55% chance of being robust to
mutation (i.e., of having a TDMI lower than 95% of the
randomised set of genes). This result was consistent with the
fact that TDM increases with expression level and could
subsequently result in stronger selection for reduced TDMI.
Essential genes [21] and old genes (genes introduced long ago
into the chromosome) [22] were more robust than others.
However, the significance of these factors disappeared when
MCUwas also taken into account in the analysis, revealing that
expression intensity is the key factor that drives selection for
reduced TDMI. Along the same lines, gene function classes
associated with strong expression tended to contain more
robust genes.

Selection for Lower TDM rather than mRNA Stability
Because we are studying DNA intra-strand secondary

structures, one could argue that some form of selection
acting at the RNA level is responsible for our observations.
Two points lead us to think that selection for reduced TDMI
at the DNA level is relevant: (i) high TDMI is associated with
increased mutation rate at the DNA level, as evidenced by
comparison of orthologous genes (Figure 1A); and (ii) to our
knowledge there is no biological evidence of a general link
existing between RNA stability and secondary structure in the
coding regions of prokaryotes (but see for eukaryotes [23]),
although some special cases have been described [24]. Using
published experimental estimations of mRNA half-life [25],
we could not identify any correlation of mRNA half-life with
either TDMI or the probability of being robust. Some
previous bioinformatics studies on enterobacteria have found
an excess of secondary structure in the genome within coding
sequences [26–29] using whole gene length or, as we do, short

subsequences of genes. Whereas most studies suggested a link
between secondary structures and RNA stability based on
verbal arguments, one study [28] supported such a link based
on the observation that genes in operons increased in
stability as they approached the 39 end of the mRNA (the
end that gets digested first by RNAses). We reproduced their
analysis on a larger sample of operons that were five genes
long and could not identify any effect of gene position in
operons on their stability statistics nor on ours (unpublished
data). This suggests that this effect might have been due to
limited sampling or to differences in gene features among
operons of various lengths.
In the present paper, we suggest that selection might have

acted on DNA sequences to decrease the probability of
mutation during transcription. Such selection for controlled
mutation rate increases with the expression level of genes.
More than 50% of highly expressed genes present a non-
random combination of synonymous codons that results in
lower overall gene mutability. Such TDMI optimisation
produces a positioning bias in synonymous codons, demon-
strating another non-neutral usage of synonymous codons
that could contribute to the reduced synonymous substitu-
tion rate observed in highly expressed genes. As the most
highly expressed genes did not present the lowest gene
mutability, we hypothesise that the strength of selection
acting to minimise TDM is as weak or even weaker than the
one acting on codon bias [30,31]. It is likely that in highly
expressed genes, the two forces compete against one another,
a factor that could help explain why these genes do not have
the optimal codon usage [32]. As TDMI optimisation involves
DNA secondary structures using both synonymous and non-
synonymous sites, it could also contribute to the observed
reduction in non-synonymous substitution rate associated
with higher gene expression [13,14].
We performed the same analysis to the Buchnera aphidicola

strain APS genome [33], a genome close to E. coli but in which
selection is thought to have been relaxed because of an
obligate intracellular lifestyle and reduced population sizes
[34]. As would be expected if selection to minimise TDM is
weak, we could not find any trace of such selection in the B.
aphidicola strain APS genome. Therefore, not all bacterial
genomes necessarily present the patterns described in the
present study, and it will be of great interest to investigate
how selection for reduced TDM is spread across other
bacterial species.

Materials and Methods

Genomes used. For this study, we used the fully sequenced E. coli
genomes of strains MG1655 [17], CFT073 [18], and O157:H7 [19], and
a genome of another bacteria, B. aphidicola strain APS [33], which is an
endocellular symbiont harboured by pea aphids.

Determination of TDMI. To determine the bases that are protected
or not during transcription, we extracted all the annotated genes
(except the pseudogenes) of genomes. Then we carried out folding of
each subsequence of 30 nucleotides, using the program hybrid-ss-min
in the software OligoArrayAux 1.9. This program folds single-strand
DNA and measures energies for Watson-Crick (A/T and G/C) and
wobble pairs (G/T) [15,16].

Wright et al. [5] defined a mutability index (MI) as follows: (total
percentage of foldings in which the base is unpaired) 3 (the lowest
�DG of the foldings in which the base is unpaired). Our aim, here, is
to study TDM at the gene level. MI once averaged over a whole gene is
highly influenced by the second part of the equation, as numerous
bases remain unpaired in all folding. It is therefore highly correlated
with GC% (r ¼�0.8) and reflects more the existence of stable local

Figure 3. Fraction of Significant Genes Predicted from MCU by Logistic

Regression

Logistic regression (p , 2.2 3 10�16) linking the fraction of genes
significantly robust (i.e., being significantly less mutable than expected
according to protein sequence) to gene MCU (used here as a proxy for
gene expression). The red line represents the fraction of significant genes
predicted by the regression, and the grey histogram represents the
observed fraction of significant genes by class of gene MCU.
doi:10.1371/journal.pgen.0020176.g003
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structures in the genes than the relative mutability of the gene. If we
define a stability index (SI) along the same line, i.e., SI ¼ (total
percentage of foldings in which the base is paired)3 (the lowest�DG
of the foldings in which the base is paired), both SI and MI correlate
strongly at the gene level (r ¼ 0.92), revealing that at the gene level
they are not informative about mutability. We therefore defined
TDMI using relative time that each base spent in an unpaired state, as
described in the main text.

Gene sequence randomisation. To free our analysis of the various
selective constraints that could have masked the selection acting to
limit TDM, we performed several randomisations of gene sequences.
We either fully randomised nucleotides in the sequence (conserving
only GC%) or performed a synonymous codon randomisation that
kept constant both gene-encoded protein sequence and gene codon
bias. Using the latter randomisation, we calculated a p-value. For each
gene, we compared the average TDMI of random genes with the
average TDMI of the observed gene and defined the p-value as the
number of random sequences having smaller TDMI than the observed
sequence. A gene was said to be intrinsically robust to mutation if
more than 95% of the simulations had higher TDMI values than the
observed gene (i.e., p , 5%).

MCU. We calculated the MCU, a measure of codon bias, using data
based on Kanaya et al. [35]: MCU ¼ (number of major codons)/(total
number of codons). Similar results were obtained using the codon
adaptation index [36].

Statistics software. For statistics (multiple linear regressions,
Student’s t-test, chi-squared, etc.), we used the statistics software R
(R Foundation for Statistical Computing, Vienna, Austria) [37].

Operon prediction. Operons were predicted according to the
following criteria: collinear genes separated by less than 150 bases

and no transcription terminator (E. Rocha, personal communica-
tion). To study the effect of gene position in the operon on TDMI,
only genes in operons five genes long were used. This prevents the
appearance of statistical artefacts due to differences in gene
composition (GC%) as a function of operon length.

Supporting Information
Accession Numbers

The EntrezGenomes (http://www.ncbi.nlm.nih.gov/genomes/static/
eub_g.html) accession numbers for the strains discussed in this
paper are B. aphidicola APS (NC_002528), E. coli CFT073
(NC_004431), E. coli MG1655 (NC_000913), and E. coli O157:H7
(NC_002695).
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