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Adaptation proceeds through the selection of mutations. The dis-
tribution of mutant fitness effect and the forces shaping this dis-
tribution are therefore keys to predict the evolutionary fate of
organisms and their constituents such as enzymes. Here, by pro-
ducing and sequencing a comprehensive collection of 10,000
mutants, we explore the mutational landscape of one enzyme
involved in the spread of antibiotic resistance, the beta-lactamase
TEM-1. We measured mutation impact on the enzyme activity
through the estimation of amoxicillin minimum inhibitory concen-
tration on a subset of 990 mutants carrying a unique missense
mutation, representing 64% of possible amino acid changes in
that protein reachable by point mutation. We established that
mutation type, solvent accessibility of residues, and the predicted
effect of mutations on protein stability primarily determined
alone or in combination changes in minimum inhibitory concen-
tration of mutants. Moreover, we were able to capture the drastic
modification of the mutational landscape induced by a single sta-
bilizing point mutation (M182T) by a simple model of protein
stability. This work thereby provides an integrated framework
to study mutation effects and a tool to understand/define better
the epistatic interactions.
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The distribution of fitness effects (DFE) of mutations is central
in evolutionary biology. It captures the intensity of the se-

lective constraints acting on an organism and therefore how the
interplay between mutation, genetic drift, and selection will
shape the evolutionary fate of populations (1). For instance, the
DFE determines the size of the population required to see fit-
ness increase or decrease (2). To compute the DFE, direct
methods have been proposed based on estimates of mutant fit-
ness in the laboratory. These methods have some drawbacks:
being labor intensive, they have been built at most on a hundred
mutants, the resolution of small fitness effects (less than 1%) is
hindered by experimental limitations, and finally, the relevance of
laboratory environment is questionable. However, direct methods
have so far provided some of the best DFEs using viruses/bac-
teriophages (3, 4) or more recently two bacterial ribosomal pro-
teins (5). All datasets presented a mode of small effect mutations
biased toward deleterious mutations, but viruses harbored an
additional mode of lethal mutations.
For population genetics purposes, the shape of the DFE is in

itself fully informative, yet from a genetics point of view, the
large-scale analysis of mutants required to compute a DFE may
also be used to uncover the mechanistic determinants of muta-
tion effects on fitness (6, 7). The goal is then not only to predict
the adaptive behavior of a given population of organism, but to
understand the molecular forces shaping this distribution. This
knowledge is required, at the population level, to extrapolate the
observations made on model systems in the laboratory to more
general cases. More importantly, it may pave the way to some

accurate prediction of the effect of individual mutations on gene
activity, a task of increasing importance in the identification of
the genetic determinants of complex diseases based on rare
variants (8, 9).
How can the effect of an amino acid change on a protein be

inferred? Homologous protein sequence analysis established that
the frequency of amino acids changes depends on their biochemical
properties (10), suggesting variable effects on the encoded protein
and subsequently on the organism’s fitness. A recent study using
deep sequencing of combinatorial library on beta-lactamase TEM-1
showed for instance that substitutions involving tryptophan
were the most costly (11). The classical matrices of amino acid
transitions used to align protein sequences are meant to cap-
ture these effects. Consequently, the analysis of diversity at
each site in a sequence alignment has been used to infer how
costly a mutation may be (12, 13). More recently, a biophysical
model proposed to integrate further the effects of amino acid
changes by considering their effect on protein stability (14–17).
This model assumes that most mutations affect proteins through
their effects on protein stability, which determines the fraction of
properly folded protein in the cell. Several empirical evidences
support this model. First, the residues in proteins that are ex-
posed to the solvent contribute less to protein stability and evolve
faster (18). Second, using either general properties or in silico
predictions of mutation effects on stability (14, 16), this model
could explain the rate of loss of function of beta-lactamase
TEM-1 with the accumulation of mutations. However, these
evidences are indirect, based either on sequence analysis or on
experimental analysis of mean effects. As such, they only give
a qualitative support to the role of protein stability, and a more
detailed analysis is needed.
To improve our knowledge on the DFE and its molecular

determinants, we undertook a quasi-exhaustive approach and
produced a large library of random mutants in the enzyme beta-
lactamase TEM-1. There are several reasons for using TEM-1 as
a model protein. First, about a fourth of all proteins in a bacterial
species such as Escherichia coli are enzymes (19). Second, we
know precisely TEM-1’s substrate, beta-lactams, and therefore
its activity can be estimated at large scale on individual mutants
with minimum inhibitory concentration (MIC) to beta-lactam
amoxicillin. Third, TEM-1 being naturally present on plasmids
is much easier to manipulate in its natural background than
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chromosomal genes. Fourth, it is a model enzyme in bio-
chemistry with well-defined 3D structure (20) and thermody-
namical characteristics (21), and the impact of some stabilizing
mutations in that enzyme has already been described (11, 14, 22–
24). Finally, it is a gene of medical importance that provides high-
level resistance to first-generation beta-lactams, and evolved an
extended spectrum to third-generation beta-lactams with a hand-
ful of point mutations (25, 26). Using TEM-1 as a model enzyme,
we were able to uncover some universal determinants of mutation
effects, to quantify how powerful they were to explain the impact
of mutations and to define a simple model that could capture
both mutation effect and their epistatic interactions.

Results
Distribution of Single Mutant’s MICs. To investigate mutation
effects on TEM-1, we produced 10,000 mutants using random
mutagenesis with an average of 1.93 mutation per clone
(Methods), resulting in 1,700 clones with no mutations or wild
types, and 2,383 single mutants. On all mutants, an MIC to
amoxicillin was performed on plates to control the emergence
of de novo mutation in the assay (SI Appendix). MIC is a com-
posite parameter that reflects the efficiency of enzyme production,
folding, and activity on its substrate, and the cost of enzyme pro-
duction on growth. MIC allows the detection of a large range of
effects but is not discriminant for small effect mutations. As we are
only interested in the enzyme activity, we discarded mutations in
the signal peptide of the enzyme (residues 1–23), nonsense, and
frame-shift mutations, 98.5% of the latter exhibiting minimal
MIC. Wild-type clones and synonymous mutants shared a simi-
lar distribution, highly different from the one of nonsynonymous
mutations. This suggests that synonymous mutation effects on
this enzyme were marginal compared with nonsynonymous ones.
We therefore extended the nonsynonymous dataset with the
incorporation of mutants having a single nonsynonymous mu-
tation coupled to some synonymous mutations and recovered
a similar distribution (SI Appendix, Fig. S2). The dataset finally
resulted in 990 mutants with a single amino acid change, rep-
resenting 64% of the amino acid changes reachable by a single
point mutation (Fig. 1A) and therefore presumably the most
complete mutant database on a single gene. Similarly to viral
DFE, the distribution of nonsynonymous MIC was clearly bi-
modal (Fig. 1B), composed of 13% of inactivating mutations
(MIC < 12.5 mg/L) and a distribution with a peak at the an-
cestral MIC of 500 mg/L. No beneficial mutations were re-
covered, suggesting that the enzyme activity is quite optimized,
although our method could not quantify small effects. We could
fit different distributions to the logarithm of MIC (SI Appendix,
Table S2 and Fig. S4). A shifted gamma distribution gave the
best fit of all classical distributions.

Correlations Between Substitution Matrices and Mutant’s MICs. With
this dataset, we went further than the description of the shape of
mutation effects distribution, and studied the molecular deter-
minants underlying it. We first investigated how an amino acid
change was likely to affect the enzyme using amino acid bio-
chemical properties and mutation matrices. The predictive
power of more than 90 amino acid mutation matrices stored in
AAindex (27) was tested with two approaches. First, we com-
puted C1 as the correlation between the effect of the 990
mutants on the log(MIC) and the scores of the underlying amino
acid change in the different matrices. Second, using all mutants,
we inferred a matrix of average effect for each amino acid change
on log(MIC) and computed its correlation, C2, with matrices
from AAindex (SI Appendix). Correlations up to 0.40 were found
with C1 (0.63 with C2), explaining 16% of the variance in MIC by
the nature of amino acid change (Table 1). Interestingly, with
both approaches, the best matrices were the BLOSUM matrices
(C1 = 0.40 and C2 = 0.64 for BLOSUM62, SI Appendix, Fig. 2 A
and B). BLOSUM62 (28) is the default matrix used in BLAST
(29). It was derived from amino acid sequence alignment with less
than 62% similarity. Hence the distribution of mutation effects

observed in a specific enzyme in the laboratory is not only globally
compatible with the information stored in pools of protein
sequences that have diverged for millions of years, but also points
to what is known as the best-performing matrix in protein align-
ment. At the biochemical level, the Grantham matrix (10) com-
bining polarity composition and volume of amino acids had
a performance quite similar to BLOSUMmatrices (C1 = 0.36, C2 =
–0.64). This comforted the idea that the damaging effect of
mutations was linked to their impact on the local physical and
chemical characteristics.

Contribution of Protein Stability and Accessibility to MIC Changes.
Protein stability is one of the most widely cited biophysical
mechanisms controlling mutation effects (15). The fraction of
properly folded protein, Pf, and therefore the overall protein
activity can be directly linked to protein stability, or free energy
ΔG, through a simple function, using Boltzmann constant k and
temperature T, modified from Wylie and Shakhnovich (16). If
MIC is proportional to Pf with a scaling factor M, we have:

Fig. 1. Distribution of mutation effects on the MIC to amoxicillin in mg/L. (A)
For each amino acid along the protein, excluding the signal peptide, the av-
erage effect of mutations on MIC is presented in the gene box with a color
code, and the effect of each individual amino acid change is presented above.
The color code corresponds to the color used in B. Gray bars represent amino
acid changes reachable through a single mutation that were not recovered in
our mutant library. Amino acids considered in the extended active site are
associated with a blue bar beneath the gene box. (B) Distribution of mutation
effects on the MIC is presented in color bars (n = 990); white bars illustrate the
distribution ofMIC of the wild-type clones (n = 1,594), in other words the noise
in MIC measurement. (C) Representation of the average effect of mutations
on MIC for each residue on the 3D structure of the protein.
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MIC=M ·Pf =
M

1+ e
ΔG
kT
: [1]

Through this equation, we clearly see that an increase in ΔG
leads to a lower fraction of folded proteins and therefore a de-
crease of MIC.
To quantify the contribution of stability to the mutant loss of

MIC, we used two approaches.
First, as mutations affecting buried residues in the protein 3D

structure tend to be more destabilizing, we tested how accessi-
bility to the solvent could explain our distribution of MIC
(Methods, Table 1, Fig. 2C). Accessibility could explain up to
22% of the variance in log(MIC). Mutants without damaging
effect (MIC = 500 mg/L) were found at sites significantly more
exposed to the solvent than expected from the whole protein
accessibility distribution [Kolmogorov–Smirnov test (ks test) P <
3e-9]. Conversely, damaging mutants with MIC less than or
equal to 100 affected an excess of buried sites (ks test, MIC 100,
P < 0.005; MIC 50, P < 0.002; MIC 25, P < 0.001; MIC 12.5, P <
1e-16). No residue with an accessibility higher than 50% could
lead to an inactivating mutation (Fisher test P < 2e-16).
Second, we computed the predicted effect of mutants on the

free energy of the enzyme with FoldX (30) and PopMusic (31)
softwares (Fig. 2D). As the active site may lead to some dam-
aging effects independent of the stability effect of mutations, we
performed analysis including and excluding it (SI Appendix). For
both softwares, the correlation between mutants predicted
changes in stability, and log(MIC) was improved when the active
site was omitted (Table 1). Using PopMusic predictions, up to 27%
of variance in log(MIC) of mutants out of the active site could be
explained. However, stability impact on MIC should be inferred
through Eq. 1. However, as we do not know the ΔG of TEM-1
(ΔGTEM-1) in vivo, we looked for the ΔGTEM-1 that would maximize
the correlation between observed and predicted MIC through Eq.
1. Similar correlations could be recovered with a ΔGTEM-1 around
–1.73 kcal/mol (SI Appendix, Fig. S6).

Growth Rate of Mutants and V0. Although MIC is a discrete and
quite rough measure of TEM-1 activity, we wanted to test our
mutants either on a more direct fitness-linked phenotype or on
a more enzymatic phenotype. We therefore sampled the mutants
having a single nonsynonymous mutation (n = 757) and per-
formed growth curves in triplicates at a low (6 mg/L) and a high
concentration (100 mg/L) of amoxicillin. On 474 of these we

measured the initial velocity on cell extracts, V0, which repre-
sents a composite estimate of the functional enzyme concentra-
tion and its activity. First, a correlation of 80% (69%) was found
between the maximum growth rates at low (high) concentration
and the MIC scores. This suggests that MIC can be associated
with fitness, particularly when a low concentration of antibiotic is
used. Indeed, in such conditions, the correlation holds, if we
exclude the clones with a null growth rate (r = 0.5) and even if we
exclude clones with MIC of less than 100 (r = 0.15, P = 0.0004).
Hence, even if clones have an MIC 10-fold higher than the an-
tibiotic concentration, their MIC is still correlated to growth
rate. Second, for both concentrations, all of the factors found to
explain MIC were recovered (SI Appendix, Tables S3 and S4).
However, the variance explained was consistently lower than for
MIC. Concerning the V0 on cell extracts, although the measure
in 96-well plates was noisy, it correlated with MIC (r = 0.5) and
with all three parameters identified (BLOSUM62 r = 0.3, Ac-
cessibility r = 0.33, and ΔΔG estimates r = –0.3), comforting the
robustness of our results.

Impact of a Stabilizing Mutation on the Distribution of MIC. The
stability model predicts a strong impact of stabilizing mutations
on the distribution of mutations effects (14). We therefore
produced another library of mutants, in the TEM-1 mutant
having the M182T stabilizing mutation. This mutation has been
shown to be selected for in the wild due to its stabilizing effect on
a modified active site (21). The distribution of mutants in that
background was drastically different from the previous one (ks test
P < 2e-16), with more than 80% of mutants showing no change in
MIC (Fig. 3A). Not only did the presence of M182T mutation
decrease overall the effect of mutations on MIC (Fig. 3B), but
some mutations classified as inactivating in its absence appeared as
neutral in its presence. However, those mutations did not show
any clear spatial localization toward M182T (SI Appendix, Fig.
S9), comforting a global effect of M182T on the protein.

Thermodynamic and Functional Properties of a Subset of Mutants. To
validate experimentally the contribution of enzyme stability/
folding on the effect of mutations on MIC and their epistatic
interactions, we explored the biochemical impact of two dele-
terious mutations, A36D and L250Q, both remote (>19 Å) from
the active site. A36 and L250 are buried residues located in an
alpha-helix and in a beta-sheet, respectively; they have a low
MIC that was dramatically increased in the presence of M182T
mutation. We studied, therefore, thermodynamic and enzymatic
properties of TEM-1, M182T, A36D, A36D/M182T, L250Q, and
L250Q/M182T mutants. Proteins were purified, and their activity
and thermal stability were investigated. We first assayed the
catalytic activity at different temperatures (27 °C to 67 °C). Then
thermal denaturation was assessed through tryptophan fluores-
cence measurements (Table 2).
TEM-1 and M182T presented similar catalytic activities at 37 °C

(Table 2). We confirmed the stabilizing effect of M182T (22),
characterized by an increased melting temperature and a better
thermal stability of its enzymatic activity (Table 2). For all mutants,
the enzymatic activities at 37 °C were consistent with the measured
MICs (Table 2). In particular, the activities of A36D and L250Q
were decreased by three orders of magnitude. As expected, the
presence of the M182T mutation suppressed partially the effects
on enzymatic activity of the deleterious mutations.
The high melting temperature of both deleterious mutants

suggested that their low activity resulted from their folding in
an alternative stable conformation competing with the active
conformation. Presumably, mutation M182T, by enhancing the
stability of the active conformation, shifts the competition to-
ward that state and therefore strongly restores the activity in the
double mutants.

A Simple Model of Protein Stability Accounts for Changes in the
Distribution of MIC. Drastic changes in mutation distribution
due to a single mutation suggest that rather than using classical

Table 1. Fraction of variance of the mutants’ MIC explained by
the different factors alone or in combination

Determinant

Variance explained

Whole enzyme,
with interaction

Active site excluded,
with interaction

BLOSUM62 0.16 0.18
Accessibility 0.22 0.20
ΔΔG Popmusic 0.19 0.27
ΔΔG foldX 0.15 0.19
BLOSUM62 + Accessibility 0.38 (0.43) 0.39 (0.44)
BLOSUM62 + ΔΔG Popmusic 0.28 (0.28) 0.36 (0.36)
BLOSUM62 + ΔΔG foldX 0.24 (0.24) 0.28 (0.28)
Accessibility + ΔΔG Popmusic 0.27 (0.27) 0.31 (0.32)
Accessibility + ΔΔG foldX 0.30 (0.32) 0.31 (0.34)
BLOSUM62 + Accessibility +

ΔΔG Popmusic
0.40 (0.44) 0.43 (0.48)

BLOSUM62 + Accessibility +
ΔΔG foldX

0.42 (0.46) 0.43 (0.48)

Either the whole enzyme is considered or the active site is excluded. The
adjusted R square is given for the combination of factors without or with (in
parenthesis) interactions among factors.
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distributions to fit the data, some mechanistic-based approach is
needed. We first used Eq. 1 to analyze the prediction of Pop-
Music on the combined TEM-1 and M182T mutant datasets,
excluding the ones in the active site. Setting ΔGTEM-1 = −1.73
kcal/mol as estimated before, we found that using the in vitro
estimated stabilizing effect of M182T mutation (ΔΔGM182T =
−2.7 kcal/mol) (21), the variance explained by PopMusic pre-
dictions, through Eq. 1, increased from 20% to 29% (95%
confidence interval (CI) 0.24–0.33). Second, we tried to fit the
distribution of MIC, using Eq. 1, assuming that the impact of
mutations on ΔG can be represented as a shifted normal distri-
bution (16). Because in vitro stability (16) can differ from in vivo

stability, we fitted the stability parameters. Using the scaling
parameter M, an average ΔΔG of mutants, μ, and a SD of
mutants effects on ΔG, σ, we obtained the best fit to the distri-
bution of MIC of TEM-1 mutants (SI Appendix, Table S2),
outcompeting the gamma distribution. More interestingly, the
distribution of mutants MIC in both TEM-1 and M182T back-
grounds (without the active site) could be recovered (SI Ap-
pendix, Fig. 3 C and D) using the previously mentioned ΔG of
TEM-1 and M182T [M = 377 mg/L (95% CI 372–382), μ = 0.76
kcal/mol (0.47–1.01), σ = 2.62 kcal/mol (2.36–2.90)].

Discussion
DFE Is Dynamical. Using a model enzyme involved in antibiotic
resistance, we analyzed the effects of a thousand independent
single mutants on an enzyme. Even if we did not use a fitness
estimate but MIC as a proxy, our results are similar with previous
estimates of DFE for whole organisms and whole genes, with the
exception of ribosomal proteins. As in viruses and enzymes,
a fraction of inactivating mutations is found, such that a bimodal
distribution is recovered with a skewed mode of neutral and
deleterious mutations and one of lethal. This bimodal shape
seems, therefore, to be the rule, and the absence of inactivating
mutations as observed in ribosomal protein the exception. How-
ever, our work suggests that despite this qualitative shape con-
servation, the distribution of mutation effect is highly variable
even within the same gene. Here a simple stabilizing mutation
with no detectable effect on the activity of the enzyme results in
a drastic shift of the distribution toward less damaging effects of
mutations. Hence a static description of the DFE, using for in-
stance a gamma distribution, is not enough and a model-based
description that could account for these changes is required.

A Simple Model of Stability. During the last decade, protein sta-
bility has been proposed as a major determinant of mutation
effects. Here, using MIC of individual single mutants, rather
than the fraction of resistant clones in a bulk of mutants with an
average number of mutations, we could quantify this contribu-
tion and clearly demonstrate that a simple stability model could
explain up to 29% of the variance of MIC in two genetic back-
grounds. Previous models have been proposed to model the
impact of mutations on protein stability. Some simplified models
used stability as a quantitative trait but lacked some mechanistic
realism (15, 32). Bloom et al. used a threshold function to fit
their loss of function data, however such a function could not
explain the gradual decrease in MIC observed in our data (14).
Wylie and Shakhnovich (16) proposed a quantitative approach
that inspired the equation used here. Their model requires,
however, a fraction of inactivating mutations and a stability
threshold of ΔG = 0, above which fitness was assumed to be null
to mimic a potential effect of protein aggregation. However, as
a consequence, the model does not allow stability to decrease the
quantity of enzymes and therefore MIC by more than a twofold
factor. More than a 16-fold decrease in MIC was, however, ob-
served and confirmed with our biochemical experiments. Indeed
our in vitro enzyme stability analysis suggested that it is not only
the difference of free energy to the unfolded state that deter-
mines the fraction of active protein: the stability of nonactive
conformations may also matter and could be affected by mutations.
We therefore allowed positive ΔG in the model and obtained a
better fit to the data.

Limits of the Model. Despite the success of the stability approach
to explain the MIC of mutants, some discrepancies between the
model and the data remain. Although stability changes should
both integrate the accessibility of residues and the type of amino
acid change, we found that multiple regressions including the
BLOSUM62 scores and the accessibility explained much better
the data than stability change predictions (Table 1). Overall the
best linear model to explain the data included all three factors
and could explain up to 46% of the variance (Table 1). Using
a random subsample of the data, linear predictive models based
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Fig. 2. Determinants of mutations effects on MIC. (A) Average effect of
amino acid changes on MIC is presented as a matrix. The color code is
identical to the one in Fig. 1. (B) Matrix BLOSUM62, representing amino acid
penalty used in protein alignments using a color gradient of the same range
as in A. In both matrices, only amino acid changes observed in the mutant
library are colored. (C) Impact of accessibility to the solvent on mutant’s MIC.
The distribution of accessibility of amino acids (buried = 0, fully accessible =
100) is plotted for different categories of mutants sharing the same MIC.
Large effect mutations are enriched for buried sites. (D) Impact of predicted
effect of mutations on protein stability (ΔΔG estimated by PopMusic soft-
ware) on mutant’s MIC. The distribution of ΔΔG of mutants (ΔΔG > 0 is
destabilizing, ΔΔG < 0, stabilizing) is plotted for different categories of
mutants sharing the same MIC. Large effect mutations are enriched for
destabilizing mutations. In C and D, hatched fractions represent amino acids
included in the active site. The color code is similar to that of Fig. 1.
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on these factors were derived and used to predict the MIC of the
remainingmutants with a correlation of 0.67 between predicted and
observed data (SI Appendix). The limited power of ΔΔG prediction
softwares (33) may explain why BLOSUM62 and accessibility data
improve the models. Alternatively, these discrepancies may also
point to additional functional requirements beyond stability of the
native state as computed. The impact of mutations on the in vivo
foldingdynamics or theexistenceofalternative stable conformations
as our biochemical data suggest are, for instance, not accounted for
by the softwares. These elements may explain why our estimate of
ΔGTEM-1 (–1.73 kcal/mol) and the variance inmutation effect onΔG
are much higher than in vitro estimates (–8 kcal/mol) (16).

Difference Between in Vitro and in Vivo Estimates of Protein Stability.
The discrepancy we observe between the in vitro stability of
TEM-1 and that our analysis of mutants suggests is surprising.
However, selection of stabilizing mutation after selection for
modification of the active site is a common observation in pro-
tein evolution (34). Furthermore, overproduction of chaperone

increased the evolvability of enzymes, as it could compensate the
destabilizing effect of some beneficial mutations in the active site
(35). Particularly in the case of TEM-1, the stabilizing mutation
M182T has been shown to be beneficial in the hydrolysis spec-
trum extension of the enzyme, only when some destabilizing
mutations in the active site were present (25, 26). However, the
in vitro stability of these enzymes with modified active site is
lower than –4 kcal/mol, suggesting that the effect of M182T
should be marginal, and “challenging the notion that evolution is
a balance between structure and function” (36). Our estimation
of a much lower in vitro stability appears to be more compatible
with the apparent selective pressures for stabilizing mutations,
and may therefore suggest some limitations of the in vitro esti-
mation of stability, at least in the case of TEM-1.

Predicting Mutation Effects in Disease. Predicting the effect of single
amino acid changes is an important challenge in human health.
Progresses on complex diseases suggest that assigning a phenotypic
status to rare variants is essential to uncover the genetic basis of
diseases. Most mutation effect prediction softwares, such as SIFT
(13) and Polyphen2 (12), use evolutionary information to infer the
status of mutations: mutations in conserved site in amino acid
alignment are more likely to be damaging. These approaches may
suffer from two limitations: first a small fitness cost of 0.1% for
instance may be efficiently counterselected by natural selection and
therefore invariant in protein alignments and yet not enough to
cause a disease. Second, sites are treated independently and epi-
static effects are therefore not accounted for, whereas our analysis
shows that they may have drastic effects. Recent developments of
prediction softwares have now included some protein structural
information. For instance, Polyphen 2 (12) uses accessibility of the
residue as a criterion and improved its performance. However, so
far no software, that we are aware of, uses the predicted impact of
mutation on protein stability. As there is still some room for im-
provement for these methods, our work suggests that despite their
imperfections, in silico estimates of mutation impact on stability
offer an interesting improvement perspective.

Conclusion
With our extensive dataset, we identified some major determi-
nants of mutation effects on an enzyme. Mutation type, residue
accessibility, and mutation effect on stability are universal deter-
minants that support the use of a reductionist approach on a single
enzyme to give insights on all enzymes. Quantitative analysis of the
impact of mutations on the fraction of those properly folded offers
a successful framework from which a strong model of epistasis
emerges (15), the impact of mutations being highly dependent on
the enzyme global stability. Hence, although it may be possible to
assess that mutations affecting an exposed residue are unlikely to
be inactivating, the inactivating effect of buried residues may be
highly dependent on the overall stability of the enzyme. This has
some interesting evolutionary consequences: first, most deleterious
mutations may be compensated by many different stabilizing
mutations (37), and second, these compensations or fluctuations in
the stability of the enzyme may allow the building up of strong
dependencies among mutations. This may, for instance, explain
the discrepancies observed between the low (high) conservation of
a residue in protein alignments and the strong (low) impact of
mutations affecting that residue (11). More generally, the epistatic
interactions through stability effects may allow the fixation of
destabilizing mutations that may contribute to the building of
Dobzhansky–Müller incompatibilities or compensated patho-
genic deviations among independent lineages (38, 39).

Methods
A detailed description of methods is available in SI Appendix, SI Methods.

Library Construction. TEM-1 mutants were constructed using GeneMorph II
RandomMutagenesis Kit (Stratagene) to obtain an average of onemutation per
gene. The mutagenized amplicons were cloned into a modified pUC19 plasmid
containing the pMB1 origin of replication from pBR322, NcoI and NotI flanking
the start and stop codons of TEM-1’s ORF, and gentamicin resistance gene

Fig. 3. Epistatic interactions due to the stabilizing mutation M182T. (A)
Distribution of mutation effects on MIC in M182T, for mutants also found in
the TEM-1 library (n = 167). The color of the bars represents the MIC in the
TEM-1 background of the mutants. A much larger fraction of mutants with
no effect on MIC is found in M182T and is composed of mutants found to
have some deleterious effects in TEM-1 background. (B) Plot of the MIC score
in the two different backgrounds. The size of dots represents the number of
mutants in that spot. The large fraction of points in the upper diagonal
illustrates the compensating effect of mutation M182T. (C and D) Observed
(colored bars) and predicted (white bars) distributions of mutant MICs in
TEM-1 (C) and M182T backgrounds (D), using a three-parameter biophysical
model of stability and excluding the active site.

Table 2. Susceptibility, thermodynamic, and enzymatic
properties of TEM-1 and its variants

Genotype MIC, mg/L Vi/[Eo] at 37 °C, s−1 T1/2, °C Tm, °C

Wild type 500 142 ± 2 47 49.5
M182T 500 145 ± 15 59 57
A36D 12.5 0.14 ± 0.01 n.m.* 57
A36D/M182T 250 108 ±− 6 46 43
L250Q 12.5 0.15 ± 0.01 n.m.† 57
L250Q/M182T 250 28 ± 2 40.5 41

n.m., not measured.
*The activity of this mutant displays a complex temperature dependence
with a residual activity at 67 °C of vi/[E0] = 0.09 s−1.
†The activity of this mutant displays a bell-shaped temperature dependence
with a maximum around 62 °C (vi/[E0] = 0.29 s−1).
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(aacC4) at the XbaI site. The ligation products were transformed into Elec-
troMax DH10B-T1 Phage Resistant E. coli Competent Cells (Invitrogen,
Fisher Scientific) and plated on Luria–Bertani agar supplemented with
gentamicin (20 mg/L). A total of 10,368 randomly picked TEM-1 mutants
were stored into 384-well microplates and sequenced by Sanger method.

MIC Measurements. The MIC was measured by a standard agar dilution
method on Mueller Hinton (MH) agar plates containing a growing concen-
tration of amoxicillin (0, 12.5, 25, 50, 100, 250, 500, 1,000, 2,000, and 4,000mg/L).
After 18 h of incubation at 37 °C, the MIC was defined as the first concen-
tration of amoxicillin inhibiting the growth of bacteria.

MIC Score. For each mutant, MIC was computed as the median of three in-
dependent MIC measurements. MIC score is computed as log2(MIC/500). It
attributes a score of 0 to the wild type and a negative score to mutants with
decreased MIC relative to that of the wild type. For amino acid changes that
were found several times in the library as single amino acid changes, the
average MIC score was retained.

Accessibility of Amino Acids and Prediction of Mutant’s Effect on Free Energy.
The 1BTL previously published entry from the Protein Data Bank was used to
extract 3D structure information on TEM-1. Predictions of ΔΔG derived from
foldX were kindly provided by Nobuhiko Tokuriki (Vancouver, British Co-
lumbia, Canada) (34). PopMusic predictions of ΔΔG and accessibility were
computed online at http://babylone.ulb.ac.be/popmusic (31).

Amino Acid Matrices. Amino acid substitution matrices were downloaded
from www.genome.jp/aaindex/ (27).

Protein Purification.GenesforTEM-1anditsvariantswereclonedintopET36band
transformed inE. coliBL21(DE3). Theenzymeswereoverexpressedafter induction

by IPTG (1 mM), and purified on anion-exchange column (Q Sepharose FF, GE
Healthcare) followed by gel filtration (Superdex 75 column, GE Healthcare).

Thermal Denaturation of Proteins. TEM-1 and its variants were subjected to
thermal denaturation (25–80 °C with 1.5 °C/min ramping rates). Intrinsic
fluorescence (λex = 295 nm; λem = 340 nm) was followed using a FP-8300
Jasco fluorescence spectrophotometer.

Enzyme Assays on Purified Enzymes. Initial velocity was measured spectro-
photometrically at 486 nm using the chromogenic substrate nitrocefin
(32 μM) in the range of 27 °C to 67 °C with a 5 °C interval.

Enzyme Assays on Cell Extracts. TEM-1 and its variants were grown overnight in
96-deep-wellplates,andcellswerelysedusingCellCultureLysisReagent(Promega).
Lysateswere diluted in potassiumphosphate buffer pH 7.25 containing nitrocefin
(50 μg/mL) inside microtiter plates. Initial velocity was measured spectrophoto-
metrically at 486 nm using a Tecan infinite 96-well plate reader.

Maximum Growth Rate Determination.Growthcurveswereperformedat37°C in
96-well microtiter plates containing 200 μL MH broth supplemented with 6 or
100mg/L of amoxicillin, using a Tecan infinite 96-well plate reader. TheMaximum
Growth Rate was determined as the maximum value of the derivative of the
logOD600, using R software.
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