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Escherichia coli exhibits a wide range of lifestyles encompassing commensalism and various pathogenic
behaviors which its highly dynamic genome contributes to develop. How environmental and host factors shape
the genetic structure of E. coli strains remains, however, largely unknown. Following a previous study of E. coli
genomic diversity, we investigated its diversity at the metabolic level by building and analyzing the genome-
scale metabolic networks of 29 E. coli strains (8 commensal and 21 pathogenic strains, including 6 Shigella
strains). Using a tailor-made reconstruction strategy, we significantly improved the completeness and accuracy
of the metabolic networks over default automatic reconstruction processes. Among the 1,545 reactions forming
E. coli panmetabolism, 885 reactions were common to all strains. This high proportion of core reactions (57%)
was found to be in sharp contrast to the low proportion (13%) of core genes in the E. coli pangenome, suggesting
less diversity of metabolic functions compared to that of all gene functions. Core reactions were significantly
overrepresented among biosynthetic reactions compared to the more variable degradation processes. Differ-
ences between metabolic networks were found to follow E. coli phylogeny rather than pathogenic phenotypes,
except for Shigella networks, which were significantly more distant from the others. This suggests that most
metabolic changes in non-Shigella strains were not driven by their pathogenic phenotypes. Using a supervised
method, we were yet able to identify small sets of reactions related to pathogenicity or commensalism. The
quality of our reconstructed networks also makes them reliable bases for building metabolic models.

Escherichia coli is a versatile species encompassing commen-
sal organisms, as well as intraintestinal E. coli (InPEc) and
extraintestinal E. coli (ExPEc) pathogens (27, 49). This variety
of lifestyles has been seen as a consequence of the huge E. coli
genome plasticity (51). However, linking genomic elements to
phenotypic behaviors is not trivial because several layers of
biological processes separate genes from their phenotypic ef-
fects, and in extreme cases, the evolutionary path can lead
either to the functional convergence of distinct sets of genes
or to the functional divergence of an initially common set of
genes. Consequently, in order to establish links between ge-
nomes and phenotypes, one needs an integrative layer. A re-
cent study on a set of 20 E. coli strains (51) has shown that a
large fraction of the shared genomic elements with known
function is related to metabolism. Because it is now feasible to
reconstruct metabolic networks at the genome scale (7, 13, 16,
26), these metabolic networks can, in principle, be used as
functional bridges between genomic diversity and phenotypic

differences. Currently, such reconstructions are performed
automatically from the annotation of input genomes, using
algorithms that match these annotations with the contents of
reference metabolic databases (13, 16).

In this work, we studied the metabolic diversity of the E. coli
species from an evolutionary point of view, with a focus on (i)
the extent of metabolic diversity compared to that of genomic
diversity, (ii) the correlation between metabolic diversity and
phylogeny, and (iii) the metabolic functions associated with
pathogenicity.

To these ends, we reconstructed and compared the meta-
bolic networks of 29 strains of E. coli, for which genome se-
quences and annotations were available (51). This set of strains
comprises 23 E. coli strains covering all main phylogenetic
groups (A, B1, B2, D, E, and F) (11) and various pathogenic or
nonpathogenic behaviors (commensal, ExPEc, InPEc), as well
as 6 Shigella strains, which are human obligate intraintestinal
pathogens belonging to the E. coli species (15, 44). To obtain
metabolic networks suitable for comparative analyses, we first
developed a high-quality automated reconstruction process
which builds homogenized genome annotations and combines
metabolic evidence from the EcoCyc and MetaCyc databases
(7, 28a). This reconstruction process is also able to infer en-
zyme complexes by similarity with K-12 MG1655 complexes. In
a second step, we defined the core and variable parts of E. coli
metabolic networks and analyzed their metabolic roles. We
then confronted differences in metabolic networks with E. coli
phylogeny and phenotypes to assess which factors influenced
most changes in E. coli metabolism. As most differences were
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found to be uncorrelated with phenotypes, we finally per-
formed a supervised search for metabolic differences specific
to E. coli pathogenic phenotypes.

MATERIALS AND METHODS

Reannotation of E. coli genomes. Building upon a previous annotation work
performed for 20 E. coli/Shigella strains in the context of the ColiScope project
(51) with the MicroScope platform (52), we added nine newly published E. coli
genomes (strains ATCC 8739, E24377A [45], SE11 [38], LF82 [35], O127:H6
E2348/69 [23], O157:H7 EC4115, HS [45], 042 [9], and SMS-3-5 [17]). All of
these publicly available genomes were reannotated using the following process.
First, all genomes were integrated in the ColiScope database using MICheck, a
method which enables rapid verification of sets of annotated genes and frame-
shifts in previously published bacterial genomes (10). Second, functional anno-
tations of our previously annotated E. coli genes were automatically transferred
in the new strains to genes showing very strong sequence similarity (85% identity
on at least 80% of the length of the smallest protein). The remaining genes, i.e.,
those without any ortholog in any ColiScope genome, were left with their orig-
inal functional annotations. All genome annotations are available through
the MicroScope web platform (http://www.genoscope.cns.fr/agc/microscope
/coliscope).

Metabolic network reconstruction. Our metabolic network reconstruction pro-
cess is mostly based on Pathway Tools (version 14.0), which is the BioCyc
reconstruction software (28), and its associated metabolic database, MetaCyc
(7). We used as input all genome annotations coming from our reannotation
process, including genes, pseudogenes, partial genes, and insertion sequence-like
and prophage-like elements.

By default, Pathway Tools associates genes with metabolic reactions from
MetaCyc by examining gene ontology terms, gene product names, and EC num-
ber terms found in the genome annotation. Those reactions will be denoted
matched reactions. Due to wrongly formatted or unspecific EC numbers or
insufficiently explicit textual annotations, Pathway Tools may in some cases
either overpredict or miss enzymatic reactions. To improve the accuracy of this
gene-reaction association step, we exploited the expert curation done in the
EcoCyc metabolic database for E. coli K-12 MG1655 (28a) by transferring
gene-reaction associations found in EcoCyc to orthologous genes in the other
strains. For this, we mapped genes from K-12 MG1655 to genes of each E. coli
strain using the best bidirectional hit (BBH), computed by BLAST (2), with
similarity rates above 70% and overlap above 80% of the shorter gene length.
Direct associations between each gene having an ortholog in K-12 MG1655 and
the corresponding EcoCyc reactions were then specified in a dictionary file given
as an additional input to Pathway Tools. Pathway Tools was finally executed
using this file and the homogenized genome annotations. All reconstructed
networks are available from the Metacoli project website (http://www.genoscope
.cns.fr/agc/metacoli) and are included in the MicroCyc repository (http://www
.genoscope.cns.fr/agc/microcyc).

Since Pathway Tools infers full metabolic pathways (28), some reactions lack-
ing an associated gene were retrieved on the basis of their presence in an inferred
pathway. These purely inferred reactions were left in the MicroCyc databases to
allow users to examine complete metabolic pathways but were removed for all
comparative analyses done in this work.

Similarly, reactions associated only with pseudogenes were kept in the Micro-
Cyc databases but were removed from our comparative analyses.

The occurrences of all reactions (gene-associated, inferred, pseudogene-asso-
ciated, and spontaneous reactions) can be found in Table S1 in the supplemental
material.

Inference of complexes. Even though BioCyc databases are able to represent
protein complexes, the Pathway Tools reconstruction software does not auto-
matically infer them. Benefiting from the protein complexes stored in EcoCyc for
E. coli K-12 MG1655, we inferred by homology complexes for all strains using the
following procedure.

First, for each protein complex experimentally identified in E. coli K-12
MG1655 and extracted from EcoCyc, we recursively analyzed its composition in
terms of subunits. An equivalent subunit was inferred in the studied E. coli strain
if and only if we could find in its genome an orthologous polypeptide using BBH
computed by BLAST (2). Second, when an orthologous complex could be in-
ferred, the functional annotations of the K-12 MG1655 complex were transferred
to the reconstructed protein complex. Third, the functional annotations associ-
ated initially with each subunit of the complex were deleted if they were shared
with the reconstructed complex. This final step ensures that the enzymatic func-
tion is held only by the complex, if appropriate. This procedure was implemented

using the CyClone application programming interface (31), and all complexes are
directly stored with the metabolic networks in the MicroCyc repository (http:
//www.genoscope.cns.fr/agc/microcyc). The list of inconsistencies raised during
the complex reconstruction process (i.e., complexes with missing subunits) is
available in Table S2 in the supplemental material.

Computation of pan- and core genome/metabolism. To compute pan- and core
genomes, we considered genes that were not pseudogene, partial gene, insertion
sequence-like, or prophage-like elements. We clustered genes using the
orthoMCL program (version 1.4) (32) for proteins with similarities above 70%
and overlap above 70%. We obtained 14,986 clusters of genes that we called the
pangenome and 1,957 clusters encompassing at least one gene from each strain
that we called the core genome. To evaluate how core and pangenomes evolve
when strains are added or removed, we computed them as a function of the
number of strains for 5,000 random input orders of strains.

Similar analyses were conducted on metabolic networks. Core metabolism was
defined as the set of reactions present in all strains, and panmetabolism was
defined as the set of all reactions of all strains. Core metabolism was composed
of 885 reactions, and panmetabolism contained 1,545 reactions. Evolution of the
sizes of core and panmetabolism was studied by computing them for 10,000
random input orders of metabolic networks.

Computation of genetic distances and phylogenetic tree. We computed the
phylogenetic tree using a six-step procedure. (i) First, we built a modified core
genome including pseudogenes and the genome of an outgroup reference or-
ganism, Escherichia fergusonii (29). Gene homologies were determined by nu-
cleotide sequence comparisons of genes with similarities of �80% and coverage
of �80%. This modified core genome gathered a set of 1,388 common genes. (ii)
We performed multiple alignments on the sequences of these core genes using
the MUSCLE program (version 3.6) (14). (iii) Sequence blocks of good align-
ment were then selected with the GBLOCKS program (version 0.91) (8). (iv) We
concatenated those blocks to build one long sequence for each organism. (v) We
reconstructed the phylogenetic tree on the basis of these long sequences with the
PHYML program (version 3.1) (20), using maximum likelihood and a
GTR�gamma model. The genetic distance was directly derived from the branch
length of the generated tree. (vi) Finally, 100 bootstrap experiments were per-
formed on the previous step to assess the robustness of the tree topology.

Computation of metabolic distances. We defined the metabolic distance be-
tween two metabolic networks to be the number of distinct gene-associated
reactions between them. We computed it using reaction occurrence vectors: each
component of this vector corresponds to a reaction of panmetabolism and spec-
ifies whether the reaction is present (value � 1) or absent (value � 0) in the
considered metabolic network. Metabolic distance is therefore directly computed
as the Manhattan distance between reaction occurrence vectors, D�x, y� ��

i � 1

n �xi � yi�, for reaction i in reaction occurrence vectors x and y of length n.

Using this distance, we created a metabolic tree by neighbor joining with R (46)
and the R package ape (40).

MCA. Factorial multiple-correspondence analysis (MCA) is a projection tech-
nique that provides a low-dimensional graphical representation of a set of ele-
ments by capturing the maximal amount of variability from the variables describ-
ing those elements. We conducted an MCA on the reconstructed metabolic
networks for the 23 E. coli non-Shigella strains using R (46) and the package
FactoMineR (30). We took as active variables the occurrence of reactions from
panmetabolism. Considering the first two eigenvalues was sufficient to explain
34% of the data set diversity. We extracted reactions which had a significant
contribution effect on the first two dimensions using the dimdesc function with a
multiple-test correction (Bonferroni correction) and a P value lower than 0.05.

Compactness and separation measures. We computed two measures to assess
the compactness and separation of phylogenetic and phenotypic groups accord-
ing to the metabolic distance. We first defined a center for each group by taking
the mean of the occurrence vectors of all groups’ strains. Group compactness was
then defined as the average metabolic distance between the group center and all
groups’ strains. Separation between two groups was defined as the metabolic
distance between the group centers. Both measures were computed in R (46)
using the package clv (http://CRAN.R-project.org/package�clv).

Classification tree analysis. We used classification and regression tree analysis
(CART) (6), a supervised method, to determine which combinations of reactions
separate strains according to their pathogenicity. We used the R (46) package
rpart (3) with the Gini index as the criterion of homogeneity to build the trees.
We removed reactions from the core metabolism which carry no discriminating
information and grouped together reactions with the same occurrence in the
strains (called the occurrence profile). We obtained 155 different profiles. We
computed three different groups of CARTs: commensal versus other pheno-
types, ExPEc versus other phenotypes, and InPEc versus other phenotypes. We
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focused on groups of reactions belonging to the first nodes of the most homo-
geneous trees.

RESULTS

Reconstruction of metabolic networks. In order to link phe-
notypic and genomic diversity through metabolism, one needs
to accurately pinpoint similarities and differences in metabolic
function in the set of strains under scrutiny. Although several
tools are provided to automatically reconstruct metabolic net-
works from genome annotation only (7, 13, 16, 26), their level
of accuracy and the completeness of the resulting networks are
usually not sufficient to allow detailed downstream analyses,
unless manual curation is carried out (13, 16). Here, we ex-
ploited the proximity of all strains to the well-studied E. coli
K-12 MG1655 strain to develop a more efficient automatic
reconstruction process. To improve the accuracy of the default
BioCyc reconstruction process, our reconstruction strategy uses
improved genome annotations: EcoCyc, the highly curated
metabolic database for E. coli K-12 MG1655 (28a), and Path-
way Tools, the BioCyc metabolic reconstruction software (28).
This strategy was applied in two steps (Fig. 1).

First, annotations of all E. coli genomes were improved and
homogenized. In the context of the ColiScope project, an im-
portant manual annotation work of the newly sequenced E. coli
strains was performed on genes and regions not found in K-12
MG1655, thus allowing, at the end of the process, the reanno-
tation of orthologs in the previously available E. coli and Shi-
gella genomes (51). In the current study, nine new E. coli
strains have been added to the ColiScope project within the
MicroScope platform (52), and their genomes were reanno-
tated in terms of both syntactic prediction and functional an-
notations on the basis of orthologs available in the ColiScope
project (see Materials and Methods). This reannotation pro-
cess revealed some inaccurate or missed gene annotations in
these new strains and allowed us to standardize the defini-
tion and identification of pseudogenes. As a result, a set of
consistent functional annotations for all 29 genomes was
obtained and made available at the following URL: http:
//www.genoscope.cns.fr/agc/microscope/coliscope.

In the second step, we translated all genome annotations,

encompassing genes, pseudogenes, and partial genes, into met-
abolic networks by first identifying metabolic reactions from
EcoCyc for genes having orthologs in the K-12 MG1655 ge-
nome and then executing Pathway Tools with MetaCyc to
translate the annotations of the remaining genes (see Ma-
terials and Methods for the detailed procedure). Using the
highly curated EcoCyc database as the main pivot to recon-
struct the metabolism of all E. coli species significantly im-
proves the translation efficiency, as shown afterwards, since it
prevents Pathway Tools from performing false predictions for
genes orthologous to K-12 genes. Previous pivot-based recon-
struction methodologies have already been applied to other
organisms (37, 50) but were often unable to predict reactions
absent from the pivot organisms. Here, our strategy also takes
advantage of the panorganism MetaCyc database (7) to con-
sider reactions beyond those present in K-12 MG1655. All of
our reconstructed networks can be browsed, queried, and down-
loaded from the MicroCyc website (http://www.genoscope.cns.fr
/agc/microcyc).

Pathway Tools infers full metabolic pathways (28); there-
fore, some reactions with no associated gene are retrieved on
the basis of their sole occurrence in an inferred pathway. No
direct evidence supports these inferred reactions, which often
serve as candidates to fill missing biochemical activities (19).
Since we kept our reconstruction process fully automatic and
performed no further curation on the inferred pathways, we
separated these inferred reactions from matched reactions (re-
actions associated with genes).

To evaluate the benefits of our optimized strategy, we re-
constructed the networks using three increasing levels of im-
provements and compared their respective qualities. The three
levels of reconstruction were done using (i) raw genome an-
notations directly extracted from the GenBank database and
the default Pathway Tools process (strategy a), (ii) updated
genome annotations from ColiScope and the default Pathway
Tools process (strategy b), and (ii) updated genome annota-
tions from ColiScope and the combined EcoCyc/Pathway
Tools process (strategy c, our optimized reconstruction pro-
cess). We estimated the quality of the reconstructed networks
with the following criteria: number of matched reactions in the

FIG. 1. Metabolic network reconstruction process. Genome annotations are homogenized using the MicroScope platform. Then, metabolic
networks are reconstructed with BioCyc software tools using the reference metabolic database EcoCyc to benefit from expert curation on the K-12
MG1655 strain and infer enzymatic complexes and the panorganism metabolic database MetaCyc to retrieve non-K-12 MG1655 reactions.
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networks to assess their comprehensiveness, number of in-
ferred reactions to estimate their levels of confidence, and
number and completion of metabolic pathways.

Genome annotation quality directly impacted the number of
matched reactions (Fig. 2A, strategy b versus strategy a). On
average, homogenization of genome annotations increased the
number of matched reactions in each strain by an average of
31% and decreased the number of inferred reactions by an
average of 10% (Fig. 2B). In the case of E. coli O157:H7
EDL933, the number of matched reactions increased more
than 2-fold, jumping from 578 to 1,224 reactions. The use of
EcoCyc as a pivot (Fig. 2, strategy c versus strategy b) resulted
in networks with a small increase in size (2%, on average). The
number of matched reactions slightly increased (5%, on aver-
age), while the number of inferred reactions considerably de-
creased (22%, on average). This shows that our process man-
ages to transfer some of the curation performed in EcoCyc to
the other reconstructed networks, mainly preventing the infer-
ence of wrong reactions.

As regards metabolic pathways, we observed that their total
number decreased when improved genome annotations were
used (451 versus 386 pathways, on average, for strategies a and
b, respectively). This effect is mostly the consequence of the

removal of falsely inferred reactions (on the basis of erroneous
annotations and erroneous EC number-reaction associations),
which triggered the inclusion of wrong pathways. Strategy c,
however, slightly increased the number of pathways (2.5%
increase with 396 pathways, on average), adding curated path-
ways from EcoCyc and also removing some false-positive path-
ways. The completion of pathways also improved when we
optimized the reconstruction strategy. Starting from 45% of
pathways with holes in strategy a, this proportion decreased to
42% in strategy b and reached 34% in strategy c. Furthermore,
more than 44% of the pathways with holes in strategy c in-
cluded only one hole. The improvement was most noticeable
when we employed EcoCyc as a pivot, suggesting again that
curation done on a reference metabolic network can be effi-
ciently adapted to closely related organisms.

Table 1 shows the main characteristics of the final meta-
bolic networks. On average, they include 1,491 reactions
(1,274 matched, 217 inferred), with small variations occurring
around that number: 1,300 to 1,564 (1,054 to 1,338 for matched
reactions). The reaction count is slightly lower for Shigella
strains (1,437 total, on average) than for non-Shigella strains
(1,504 total, on average), a trend that is even stronger when
inferred reactions and those associated with pseudogenes are

FIG. 2. Number of matched (A) and inferred (B) reactions for each network according to the reconstruction strategy. Strategy a, use of raw
genome annotations directly extracted from GenBank database and the default Pathway Tools process; strategy b, use of updated genome
annotations from ColiScope and the default Pathway Tools process; strategy c, use of updated genome annotations from ColiScope and the
combined EcoCyc/Pathway Tools process.
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removed (1,173 versus 1,301 gene-associated reactions for Shi-
gella and non-Shigella strains, respectively). Shigella strains ac-
tually exhibit a significantly higher number of pseudogenes
than non-Shigella strains, an observation that is consistent with
their evolution to become obligate pathogens (44).

We included in the networks enzymatic complexes gener-
ated by similarity with strain K-12 MG1655 complexes de-
scribed in EcoCyc (see Materials and Methods). Among the
712 homomeric complexes found in EcoCyc, 707 (99%) could
be transferred to at least another strain (missing complexes
were associated with pseudogenes in EcoCyc) and 458 (65%)
were common to all networks. Among the 285 heteromeric
complexes from EcoCyc, 278 (97%) were created for at least
one strain and 107 (38%) were common to all strains. When
Shigella strains were removed, the number of common hetero-
meric complexes reaches 157 (55%). We found in the networks
an average of 237 complete heteromeric complexes and an
average of 31 heteromeric complexes for which only part of the
subunits could be identified. Since we could not automatically
identify the reason for the subunit absence (possible reasons
include missing gene, annotation error, or another gene with
an equivalent product) and since we had evidence for at least
a part of the complex, we decided to keep the reactions linked
to these incomplete complexes. The names and compositions
of all these complexes can be found in Table S2 in the supple-
mental material.

Using a unified source of genome annotations and a com-
mon reconstruction process for all metabolic networks limits
the biases originating from the reconstruction process, thus
making our networks reliably comparable. In order to focus on
the most reliable reactions, we performed our comparative
analyses using the set of gene-associated reactions (matched
reactions) and discarded reactions associated only with pseu-
dogenes or with no gene.

Core and variable parts of metabolism. We separated met-
abolic reactions into three categories according to their occur-
rence in strains: panmetabolism, core metabolism, and variable
metabolism (see Materials and Methods and Table S1 in the
supplemental material). Panmetabolism is the set of all reac-
tions of all strains, i.e., the global metabolic network of E. coli
species. Core metabolism is the set of reactions common to all
strains. Variable metabolism is the difference between pan-
and core metabolism, i.e., the set of reactions that are missing
from at least one strain.

Panmetabolism included 1,545 reactions. Among them, 885
reactions belonged to core metabolism (57% of the number for
panmetabolism) and 660 reactions belonged to variable me-
tabolism (43% of the number for panmetabolism). In each
strain, these 885 core reactions represented the major part of
the metabolic network (59%, on average), with only 416 reac-
tions, on average, belonging to variable metabolism. The oc-
currence of variable reactions was not uniformly distributed

TABLE 1. Main characteristics of the reconstructed metabolic networks

Strain Phylogenetic
group Phenotype No. of

genes

No. of reactions
No. of

metabolites
No. of

pathwaysTotal With
gene

With
pseudogene

Without
gene

Escherichia coli
ATCC 8739 A Commensal 4,411 1,499 1,301 11 187 1,454 347
HS A Commensal 4,541 1,510 1,300 9 201 1,443 349
K-12 MG1655 A Commensal 4,182 1,439 1,269 4 166 1,385 340
K-12 W3110 A Commensal 4,394 1,461 1,273 7 181 1,425 344
55989 B1 InPEc 4,961 1,473 1,268 6 199 1,440 348
E24377A B1 InPEc 5,346 1,521 1,308 7 206 1,473 351
IAI1 B1 Commensal 4,412 1,486 1,271 3 212 1,450 351
SE11 B1 Commensal 5,071 1,504 1,318 4 182 1,451 345
536 B2 ExPEc 4,654 1,499 1,290 18 191 1,452 344
APEC O1 B2 ExPEc 4,874 1,482 1,289 4 189 1,392 340
CFT073 B2 ExPEc 5,396 1,532 1,312 25 195 1,456 345
ED1a B2 Commensal 5,103 1,507 1,292 11 204 1,361 340
LF82 B2 InPEc 4,584 1,483 1,299 4 180 1,378 332
O127:H6 E2348/69 B2 InPEc 4,944 1,485 1,296 14 175 1,423 336
S88 B2 ExPEc 4,848 1,503 1,288 6 209 1,433 343
UTI89 B2 ExPEc 5,305 1,512 1,314 4 194 1,464 346
042 D InPEc 5,031 1,509 1,311 6 192 1,463 343
UMN026 D ExPEc 5,046 1,564 1,338 3 223 1,452 352
O157:H7 EC4115 E InPEc 5,784 1,534 1,327 11 196 1,446 344
O157:H7 EDL933 E InPEc 5,267 1,531 1,313 8 210 1,445 346
O157:H7 Sakai E InPEc 5,431 1,524 1,307 13 204 1,459 344
IAI39 F ExPEc 4,740 1,531 1,307 10 214 1,484 352
SMS-3-5 F Commensal 5,128 1,514 1,323 3 188 1,457 347

Shigella
S. boydii Sb227 S1 Shigellosis 4,717 1,461 1,188 52 221 1,413 332
S. dysenteriae Sd197 SD1 Shigellosis 4,867 1,300 1,054 75 171 1,238 304
S. flexneri 2a 2457T S3 Shigellosis 4,339 1,475 1,213 51 211 1,425 340
S. flexneri 2a 301 S3 Shigellosis 4,675 1,472 1,195 69 214 1,433 338
S. flexneri 5 8401 S3 Shigellosis 4,393 1,480 1,197 66 211 1,426 337
S. sonnei Ss046 SS Shigellosis 4,938 1,434 1,193 28 213 1,358 337
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among the strains, and its distribution exhibited a U-like shape
(Fig. 3): variable reactions tended to be either common to all
but a few strains or specific to one or a few strains. Relatively
few reactions were shared by medium-size subsets of strains. A
peak was yet visible at eight occurrences: these were mainly
reactions specific to the eight strains of the B2 group.

When Shigella strains were removed, panmetabolism re-
mained nearly identical (1,543 reactions), while core metabo-
lism increased to 1,065 reactions (69% of the number for
panmetabolism). This showed that E. coli reconstructed net-
works are well conserved and that Shigella has mostly lost
reactions since its divergence (22). A set of 180 reactions was
therefore absent from Shigella core metabolism. It may well
include metabolic functions that were no longer required for
Shigella strains to live in their current habitats (Shigella has a
parasitic lifestyle) and were thereby lost in these strains. These
lost reactions include, for instance, the D-allose degradation
pathway (18) and about 10 pathways involved in aromatic
compound (e.g., phenylethylamine and phenylacetate) degra-
dation or in amino acid (e.g., histidine) degradation. Lost core
reactions were also found among biosynthesis pathways linked
to amino acid, nucleotide, and fatty acid anabolism.

Missing reactions from our networks reflected to some ex-
tent the auxotrophies found experimentally for Shigella strains
(1). We observed, for instance, that the nicotinic acid biosyn-
thesis pathway lacks the essential L-aspartate oxidase activity
(genes ndaA and ndaB [42, 43]) in all Shigella strains except
Shigella dysenteriae Sd197, a result that corroborates exactly the
auxotrophies for NAD experimentally determined in a previ-
ous work (1). Similarly, the absence of homoserine O-trans-
succinylase (metA gene [54]) in Shigella flexneri 2a strain 301
may explain the methionine auxotrophy reported for some S.
flexneri strains in the same work. A few other reported aux-
otrophies could not, however, be interpreted by simply looking
at reaction presence/absence. Turning these metabolic net-
works into mathematical models of metabolism may help with
investigating these cases, as several modeling methods are
available to study growth environments in a more systematic
manner (13, 16).

The core metabolism/panmetabolism ratio was in sharp con-
trast to the core metabolism/panmetabolism ratio for the ge-
nome (see Materials and Methods for details on core and
pangenome computation). For our set of strains, the core ge-

nome represented only 13% of the pangenome (1,957 common
clusters over 14,986 clusters) (Fig. 4A), a ratio much smaller
than that for core metabolism. In addition, an assessment of
the variation of the sizes of panmetabolism and pangenome as
a function of the number of strains (Fig. 4B) showed that the
size of panmetabolism approached a plateau at 29 strains,
whereas the pangenome size was still steadily increasing. These
results suggest that diversity is more limited within E. coli
metabolic networks than it is within all gene functions. Two
main interpretations can be hypothesized from this observa-
tion. First, this estimation of metabolic diversity is limited to
the set of reactions already known. Consequently, panmetabo-
lism may lack many unknown reactions, especially those spe-
cific to poorly studied organisms. In contrast, the pangenome
is more confidently estimated since most genes, even those
whose functions remain unknown, are detected on genomes.
Because of this limitation, adding new strains to the study
would not significantly expand panmetabolism if the strain-
specific reactions are unknown, which is often the case for

FIG. 3. Distribution of reaction occurrences in strains for reactions
not in core metabolism.

FIG. 4. Evolution of E. coli core metabolism (A, curve a), core
genome (A, curve b), panmetabolism (B, curve a), and pangenome (B,
curve b), according to the number of included strains. Boxes delimit
the first and third quartiles of 10,000 different input orders of meta-
bolic networks and 5,000 different input orders of genomes.
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newly sequenced organisms. This observation has actually mo-
tivated several initiatives which focus on the search for novel
enzymatic activities rather than on the mere sequencing of
additional genomes (4, 5). Second, genes coding for enzymatic
functions may vary less than those coding other functions.
Diversity in metabolism could be traced back to a relatively
small number of distinct enzymes; genomic diversity may in-
volve nonenzymatic processes such as regulation, which con-
tributes to another level of metabolic diversity via the control
of metabolism (33).

We next examined in more detail how core and variable
reactions were distributed among metabolic categories (Table
2). Interestingly, the proportion of core reactions was signifi-
cantly higher in biosynthetic processes (68%) than in other
metabolic categories (the Fisher exact test, P � 10�15). This
contrasts with degradation processes, which contain a signifi-
cantly lower proportion of core reactions (29%) than other
metabolic categories (the Fisher exact test, P � 10�15). Bio-
synthesis reactions actually constitute the majority of reactions
from core metabolism (57%, 508 reactions). This result can be
interpreted by the fact that, when environments are changing,
metabolic functions closely related to metabolites from the
environment (e.g., degradation pathways) are more likely to
vary than biosynthetic reactions, which usually use ubiquitous
basic metabolites as precursors. A similar effect has been ob-
served in a previous study among the functions of horizontally
transferred genes (i.e., variable genes), which were found to be
involved more often in transport and peripheral degradation
pathways than in central biosynthetic processes (39).

Reactions involved in sucrose degradation are a good illus-
tration of variable metabolism. The ability to use sucrose as a
sole carbon source is a highly variable phenotype in enterobac-
teria. Among commensal strains, E. coli K-12 MG1655, K-12
W3110, HS, ATCC 8739, and SMS-3-5 cannot utilize sucrose,
whereas the IAI1 and SE11 strains can. This phenotype is also
highly variable for E. coli pathogenic strains. Chromosomal
genes associated with sucrose degradation are organized in a
cluster of two operons coding for a non-phosphotransferase
system permease (cscB gene) and a fructokinase (cscK gene) in
the first operon and a sucrose hydrolase (cscA gene) in the
second operon, with both being controlled by an adjacent re-
pressor (cscR gene) (24). This cluster is integrated next to a
tRNA-Arg gene, and the codon adaptation index (CAI) of the

cluster genes is among the lowest of all E. coli genes (among
the 8% of genes with the lowest CAI), suggesting acquisition of
the csc genes by horizontal gene transfer.

Structure of E. coli metabolic diversity. To study how met-
abolic diversity is distributed within the E. coli species, we
analyzed the metabolic distances, defined by the number of
distinct reactions between two strains (see Materials and
Methods), between strains. We first grouped strains according
to metabolic distance and obtained the tree shown in Fig. 5A.
Overall, strain groups matched phylogenetic groups relatively
well. Group B2, D, E, and F strains clearly clustered according
to their groups. The F group is a new group composed of
strains previously included in the D one (25), a fact that was
visible from the genomic point of view (Fig. 5B) but also from
the metabolic one (Fig. 5A). Strains from the A and B1 groups
are, however, mixed together. Group A and B1 strains are
actually phylogenetically close (Fig. 5B), and the evolutionary
distance between them may be too small to imply a significant
difference in their metabolic networks.

All Shigella strains were markedly more distant from the
other strains (Fig. 5A). Shigella strains have evolved from mul-
tiple distinct phylogenetic groups (15, 44), and this effect is still
visible from the strain phylogenetic tree, since they are spread
among E. coli groups (Fig. 5B). However, the high metabolic
distances that separate them from other strains have blurred
this signal, suggesting that evolution of their metabolism has
been rapid.

To further study the link between metabolism and genetic
diversity, we directly compared metabolic and genetic dis-
tances for all pairs of strains (Fig. 6; see Materials and Meth-
ods). A Mantel test performed on this pair of distances showed
that they are significantly correlated (P � 0.01), yet they have
a relatively large dispersion due to Shigella (linear regression,
r2 � 0.15). When the focus is on non-Shigella strains, linear
regression between the two distances significantly improved
(linear regression, r2 � 0.54), showing that metabolic distance
increases with genetic distance. Strains of the same phyloge-
netic groups (blue symbols in Fig. 6) were separated by sets of
50 to 150 reactions, and this number did not vary with
genetic distance. Metabolic distances between non-Shigella
strains from distinct phylogenetic groups were slightly higher
but still in the range 100 to 250 reactions. Here again, group A
and B1 strains behaved as if they formed a single phylogenetic
group, and their genetic and metabolic distances were compa-
rable to intragroup distances: sets of 75 to 125 reactions (set of
leftmost black symbols in Fig. 6).

As observed above, for similar genetic distances, Shigella
metabolic networks were markedly more distant from other
networks than were non-Shigella metabolic networks. Further-
more, metabolic distances between Shigella strains were com-
parable to metabolic distances between Shigella and non-Shi-
gella strains, while the distance between Shigella strains from
the same phylogenetic group (i.e., those of the S3 Shigella
group) was equal to the intragroup E. coli metabolic distance.
This suggests that their metabolic networks have quickly evolved
by genetic drift (11) and that most metabolic differences were
not common to all Shigella strains. Among the 176 pseudoreac-
tions (linked only to pseudogenes) found in at least one Shi-
gella strain, none were pseudoreactions in all 6 Shigella strains
and 92 were pseudoreactions in only one Shigella strain. Nev-

TABLE 2. Distribution of reactions of core, variable, and
panmetabolism across metabolic processes, as

defined in BioCyc databasesa

Process
No. of metabolic occurrences

Core Variable Pan

Biosynthesis 508 236 744
Degradation 200 224 424
Detoxification 9 5 14
Energy metabolism 68 29 97
Transport pathways 2 2 4
Other 262 231 493

Total 885 660 1,545

a Some reactions occur in distinct metabolic processes; therefore, the sum of
occurrences is higher than the total number of reactions.
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ertheless, convergent inactivation of a few metabolic charac-
ters has been reported, indicating adaptive evolution (1, 11, 34,
42). This could be a consequence of its parasitic lifestyle, which
removes requirements for some degradation/biosynthesis path-
ways, as mentioned above.

In order to examine in more detail metabolic diversity within
non-Shigella strains, we performed an MCA (see Materials and
Methods) on reaction occurrences (Fig. 7). The first two fac-
torial axes accounted for 34% of all variability. There were
more than a hundred reactions with a significant contribu-
tion (see Materials and Methods) to the first axis. Half of
the reactions with a high contribution were involved in bio-
synthetic processes, especially lipid biosynthesis (71% of
them). Another 23% of high-contribution reactions were asso-
ciated with degradation, in particular, aromatic compound
degradation (37% of them). Most of the remaining reactions
were not part of any pathway. Similarly, we observed on the
second axis that 57% of high-contribution reactions were
linked to biosynthetic processes (with 82% of them being lipid
biosynthesis), and 25% were associated with degradation (with
42% of them being aromatic compound degradation).

The large number of reactions with high contributions on
each of these axes made our MCA robust to addition or re-
moval of reactions. Moreover, when the MCA was computed
while discarding dozens of reactions with the best contribu-
tions, only minor changes to the distribution of strains were
observed (data not shown).

In agreement with observations on metabolic distances, Fig.
7A shows that phylogenetic groups were relatively well sepa-
rated by the first two axes of the MCA for all except strains of
groups A and B1, which are mixed. Group F strains were

separated from group D strains on both axes, confirming the
existence of metabolic differences between them. Such a clear
separation supports the separation of group F strains from
group D strains (25).

When strains were grouped according to their phenotypes
(commensal, ExPEc, or InPEc; Table 1 and Fig. 7B), no clear
separation could be seen from the MCA. Indeed, reaction
occurrence in strains seemed to be poorly correlated with
strain phenotypes. In order to compare more robustly pheno-
typic and phylogenetic groups with metabolic distances, we
computed compactness (mean distance between group centers
and group members) and separation (distance between two
group centers) measures for all groups and all pairs of groups
using the metabolic distances (Table 3) (see Materials and
Methods). These two measures globally evaluate the closeness
of strains within a group and their separation between two
groups, according to the chosen distance (21). Compactness
measures confirmed that strains grouped by phylogeny were
markedly closer to each other than strains grouped by pheno-
type (26 to 68 for phylogenetic groups versus 92 to 138 for
phenotypic groups). Furthermore, when compactness mea-
sures are compared with separation measures, phylogenetic
groups appeared to be globally distinct, except for the A and
B1 groups, which here again showed overlap. Metabolic sepa-
ration between phenotypic groups was, in contrast, not signif-
icantly higher than within-group distances. Strains from phe-
notypic groups were nearly as distant from each other than
from strains of other phenotypic groups. Therefore, pathoge-
nicity phenotypes did not appear to drive large changes in
reaction occurrence in these strains.

As the presence of small sets of specific reactions can, how-

FIG. 5. Evolution tree of E. coli according to metabolic (A) and genetic (B) distances. *, nodes with a bootstrap value greater than 70% for
the metabolic tree. All nodes of the genetic tree have bootstrap values greater than 70%. Phylogenetic groups are defined according to references
44 and 11 for E. coli and Shigella strains, respectively.
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ever, induce notable changes in phenotypes, we looked in more
detail for specific differences between networks grouped by
pathogenicity. As no reaction was found to be completely spe-
cific to any pathogenicity phenotype, we used a supervised
method able to slightly relax the specificity constraint and find
such characteristic sets of reactions (CART; see Materials and
Methods). We applied this method to each pathogenicity phe-
notype (commensal, InPEc, and ExPEc).

We observed that most commensal strains (except ED1a and
SMS-3-5) possess reactions able to degrade phenylacetate and
phenylethylamine (12) (paa transcription unit), which are ab-
sent from InPEc and ExPEc strains (except E24377A and
55989). E24377A and SMS-3-5 were further separated from
the commensal strains by the presence of a plasmid-encoded
toxin (PET) serine precursor (gene sat), which is known to be
an important virulence factor (47) associated with both intes-
tinal and extraintestinal infections.

ExPEc strains were mainly characterized by the absence of
psicose and psicoselysine degradation pathways (frl transcrip-
tion unit). They also specifically possess a putative transporter
of capsular polysaccharide (gene kpsT), a virulent element
used by the virulent strain E. coli K1 during neonatal septice-
mia and meningitis (41, 53).

Reactions characteristic of InPEc strains could be less clearly
identified. Most of them are putative reactions, like a ma-
leylacetoacetate isomerase (a locus similar to maiA in Sal-

monella), and another one has a high similarity with gluta-
thione S-transferase and a cobalamine adenosyltransferase
(gene glmL).

Results from this analysis can be found in Table S3 in the
supplemental material.

DISCUSSION

Establishing a link between genomes and phenotypes is dif-
ficult because several layers of biological processes intervene
between genes and their phenotypic effects. Metabolism is one
of these layers, and thanks to automated metabolic reconstruc-
tion tools, it can be studied at the genome scale for sequenced
organisms. However, identifying sound metabolic differences
between distinct organisms and assessing diversity within a set
of metabolic networks, as was done in this work, require suf-
ficiently detailed metabolic networks that standard automated
methods usually do not produce without curation (13). Here,
we were able to improve an automated reconstruction strategy
by leveraging the proximity of all strains with E. coli K-12
MG1655, whose genome and metabolism are incomparably well-
known. As a result, we provide high-quality metabolic net-
works for 29 E. coli strains, including 6 Shigella strains, all of
which are suitable for comparative analyses (available at http:
//www.genoscope.cns.fr/agc/metacoli/). Most noteworthy, a large
improvement in network completeness was achieved by updat-

FIG. 6. Plot of genetic distances (x axis) versus metabolic distances (y axis) for all pairs of strains, colored according to strain phylogenetic
groups. Blue, both strains in each pair are non-Shigella strains from the same phylogenetic group; black, strains are from distinct groups but both
are non-Shigella; green, both are Shigella strains; red, strains are from distinct groups, with one being Shigella and the other being non-Shigella.
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ing and homogenizing genome annotations for all E. coli
strains, while using EcoCyc as a primary reconstruction pivot
allowed the transfer of some of the manual curation done on
K-12 MG1655 metabolism and thereby limit the proportion of
falsely inferred reactions. We were also able to infer enzyme
complexes similar to those known in K-12 MG1655.

The reconstructed networks were composed of a majority of
E. coli core reactions and relatively few variable reactions.
Moreover, examining the evolution of the size of panmetabo-
lism as a function of the number of networks indicates that
reconstructing the metabolism of new strains will add only little
diversity to the current panmetabolism. The size of panme-
tabolism is yet likely to be underestimated, as many reactions
remain unknown. Characterizing missing enzyme activities in
the current strains will most probably contribute to expanding

the knowledge of panmetabolism at least as much as sequenc-
ing and annotating new strains do.

We observed that biosynthetic reactions were mostly part of
core metabolism and that degradation processes, on the other
hand, were mainly found in variable metabolism. This can be
interpreted by the fact that the selection pressure acting on
biosynthetic processes is likely to be similar for all strains, as
these processes, which take as inputs common central meta-
bolic precursors, are only weakly influenced by the environ-
ment. Conversely, degradation processes are directly linked to
compounds from the environment, and their selection there-
fore depends on the environment and strain lifestyles (39).

This evolutionary interpretation is supported by the large
metabolic differences separating the six Shigella strains from
the others. These strains, whose parasitic lifestyles make large

FIG. 7. Plot of the first two axes of MCA of reaction occurrences in E. coli non-Shigella strains, labeled according to phylogenetic groups
(A) and phenotypes (B). MCA was performed on reactions associated with genes. The distance between strains can be interpreted as the most
significant dissimilarities between their reaction absence/presence profiles.

TABLE 3. Compactness and separation measures for phylogenetic and phenotypic groups, according to the metabolic distance

Phylogenetic
group or

phenotype
Compactness

Separation

A B1 B2 D E F S1 S3 SD1 Commensal ExPEc InPEc

A 62
B1 64 50
B2 68 149 148
D 30 128 118 134
E 22 153 142 162 93
F 32 117 110 103 97 131
S1 NAa 188 191 196 197 205 187
S3 26 181 169 201 169 193 182 150
SD1 NA 282 280 303 308 290 297 238 258
SS NA 161 156 221 189 199 188 163 181 207
Commensal 92
ExPEc 88 119
InPEc 102 92 114
Shigellosis 138 159 199 177

a NA, not applicable; the group has only one member.
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parts of E. coli panmetabolism dispensable, have actually lost
many reactions still present in all non-Shigella strains. These
differences make their metabolic networks sufficiently distinct
from the other E. coli networks to blur their phylogenetic
origin (see metabolic tree in Fig. 5A).

When the Shigella strains were removed from the study, we
observed that differences between metabolic networks were
significantly correlated with the strains’ phylogenies but not
with their commensal/pathogenic phenotypes. This suggests
that changes in metabolic networks occurred with strain diver-
gence and were mostly not driven by strain phenotypes, as was
yet the case for the Shigella phenotype.

The fact that E. coli commensal/pathogenic phenotypes do
not globally influence their metabolic networks does not mean
that no metabolic characteristic can be associated with them.
First, the presence or absence of only a few enzymes may be
related to these phenotypes. Using a supervised classification
method, we were able to identify such cases, with some having
already been described in literature. Second, diversity in met-
abolic behaviors does not originate from enzyme diversity only.
Diversity in enzyme regulation and activity also influences me-
tabolism and cannot be assessed by solely studying recon-
structed metabolic networks. It involves, for instance, studying
regulatory networks or experimentally measuring how metab-
olism actually operates in each strain. Our reconstructed net-
works represent a first step toward such investigations, as they
form a solid basis on which to build the metabolic models
needed to integrate and interpret such experimental data.
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15. Escobar-Páramo, P., C. Giudicelli, C. Parsot, and E. Denamur. 2003. The
evolutionary history of Shigella and enteroinvasive Escherichia coli revised. J.
Mol. Evol. 57:140–148.

16. Feist, A. M., et al. 2007. A genome-scale metabolic reconstruction for Esch-
erichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic
information. Mol. Syst. Biol. 3:121.

17. Fricke, W. F., et al. 2008. Insights into the environmental resistance gene
pool from the genome sequence of the multidrug-resistant environmental
isolate Escherichia coli SMS-3-5. J. Bacteriol. 190:6779–6794.

18. Fukiya, S., H. Mizoguchi, T. Tobe, and H. Mori. 2004. Extensive genomic
diversity in pathogenic Escherichia coli and Shigella strains revealed by com-
parative genomic hybridization microarray. J. Bacteriol. 186:3911–3921.

19. Green, M. L., and P. D. Karp. 2004. A Bayesian method for identifying
missing enzymes in predicted metabolic pathway databases. BMC Bioinform.
5:76.

20. Guindon, S., and O. Gascuel. 2003. A simple, fast, and accurate algorithm to
estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696–704.

21. Handl, J., J. Knowles, and D. B. Kell. 2005. Computational cluster validation
in post-genomic data analysis. Bioinformatics 21:3201–3212.

22. Hershberg, R., H. Tang, and D. A. Petrov. 2007. Reduced selection leads to
accelerated gene loss in Shigella. Genome Biol. 8:R164.

23. Iguchi, A., et al. 2009. Complete genome sequence and comparative genome
analysis of enteropathogenic Escherichia coli O127:H6 strain E2348/69. J.
Bacteriol. 191:347–354.

24. Jahreis, K., et al. 2002. Adaptation of sucrose metabolism in the Escherichia
coli wild-type strain EC3132. J. Bacteriol. 184:5307–5316.

25. Jaureguy, F., et al. 2008. Phylogenetic and genomic diversity of human
bacteremic Escherichia coli strains. BMC Genomics 9:560.

26. Kanehisa, M., et al. 2007. KEGG for linking genomes to life and the envi-
ronment. Nucleic Acids Res. 36:D480–D484.

27. Kaper, J. B., J. P. Nataro, and H. L. T. Mobley. 2004. Pathogenic Escherichia
coli. Nat. Rev. Microbiol. 2:123–140.

28. Karp, P. D., et al. 2010. Pathway Tools version 13.0: integrated software
for pathway/genome informatics and systems biology. Brief. Bioinform.
11:40–79.

28a.Keseler, I. M., C. Bonavides-Martı́nez, J. Collado-Vides, S. Gama-Castro,
R. P. Gunsalus, D. A. Johnson, M. Krummenacker, L. M. Nolan, S. Paley,
I. T. Paulsen, M. Peralta-Gil, A. Santos-Zavaleta, A. G. Shearer, and P. D.
Karp. 2009. EcoCyc: a comprehensive view of Escherichia coli biology.
Nucleic Acids Res. 37:D464–D470.

29. Lawrence, J. G., H. Ochman, and D. L. Hartl. 1991. Molecular and evolu-
tionary relationships among enteric bacteria. J. Gen. Microbiol. 137:1911–
1921.
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